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Similarly, �(N ,M) = k(I�PM)PN k2 = kPN (I�PM)k2 . Let U =
�
U1 |U2

�
and V =

�
V1 |V2

�
be orthogonal matrices such that

R (U1) = M R (U2) = M?

R (V1) = N? R (V2) = N (5.13.11)

so that PM = U1UT
1 and I�PN = PN? = V1VT

1 . Applying (5.2.13) yields
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. (5.13.12)

Similarly, �(N ,M) =
��UT

2 V2

��
2
. The decomposition (5.15.7) remains valid, so
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= gap (M,N ).

(5.13.13)

Below is a summary of these and other properties of the gap measure.

Gap Properties
The following statements are true for subspaces M, N ✓ Rn.

• gap (M,N ) = kPM �PN k2 .

• gap (M,N ) = max
�
k(I�PN )PMk2 , k(I�PM)PN k2

 
.

• gap (M,N ) = 1 whenever dimM 6= dimN . (5.13.14)
• If dimM = dimN , then �(M,N ) = �(N ,M), and

. gap (M,N ) = 1 when M? \N (or M\N?) 6= 0, (5.13.15)

. gap (M,N ) < 1 when M? \N (or M\N?) = 0. (5.13.16)

Proof of (5.13.14). Suppose that dimM = r and dimN = k, where r < k.
Notice that this implies that M? \ N 6= 0, for otherwise the formula for the
dimension of a sum (4.4.19) yields

n � dim(M? +N ) = dimM? + dimN = n� r + k > n,

which is impossible. Thus there exists a nonzero vector x 2M? \N , and by
normalization we can take kxk2 = 1. Consequently, (I�PM)x = x = PNx, so
k(I�PM)PNxk2 = 1. This insures that k(I�PM)PN k2 = 1, which implies
�(N ,M) = 1.

Proof of (5.13.15). Assume dimM = dimN = r, and use the formula for the
dimension of a sum along with (M \ N?)? = M? + N (Exercise 5.11.5) to
conclude that

dim
�
M? \N

�
= dimM? + dimN � dim

�
M? +N

�
= (n� r) + r � dim

�
M \N?�? = dim

�
M \N?� .
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When dim
�
M \N?� = dim

�
M? \N

�
> 0, there are vectors x 2M? \ N

and y 2 M \ N? such that kxk2 = 1 = kyk2 . Hence, k(I�PM)PNxk2 =
kxk2 = 1, and k(I�PN )PMyk2 = kyk2 = 1, so

�(N ,M) = k(I�PM)PN k2 = 1 = k(I�PN )PMk2 = �(M,N ).

Proof of (5.13.16). Let U =
�
U1 |U2

�
and V =

�
V1 |V2

�
be orthogonal

matrices defined in (5.13.11), and assume that dimM = dimN = r with
dim

�
M \N?� = dim

�
M? \N

�
= 0. The matrix UT

2 V1 is nonsingular be-
cause it is (n� r)⇥ (n� r) and has rank n� r (apply the formula (4.5.1) for
the rank of a product). From (5.13.12) we have
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< 1 (recall (5.2.6)).

A similar argument shows �2(N ,M) =
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ercise 5.15.11(b)), so �(N ,M) = �(M,N ) < 1.

Because 0  gap (M,N )  1, the gap measure defines another angle be-
tween M and N .

Maximal Angle
The maximal angle between subspaces M, N ✓ Rn is defined to be
the number 0  ✓max  ⇡/2 for which

sin ✓max = gap (M,N ) = kPM �PN k2 . (5.13.17)

For applications requiring knowledge of the degree of separation between
a pair of nontrivial complementary subspaces, the minimal angle does the job.
Similarly, the maximal angle adequately handles the task for subspaces of equal
dimension. However, neither the minimal nor maximal angle may be of much
help for more general subspaces. For example, if M and N are subspaces
of unequal dimension that have a nontrivial intersection, then ✓min = 0 and
✓max = ⇡/2, but neither of these numbers might convey the desired information.
Consequently, it seems natural to try to formulate definitions of “intermediate”
angles between ✓min and ✓max. There are a host of such angles known as the
principal or canonical angles, and they are derived as follows.


